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Our goal in this work is to understand the change of frequency 


content due to the effect of nonlinear elasticity that takes  


place during seismic wave propagation.  To this end, we have 


built up an expanded theoretical model describing nonlinear 


interaction of frequency components of large-amplitude waves 


in rocks. We also conducted ultrasonic laboratory experiments 


using 1D wave propagation in rods. Model parameters for first 


and second nonlinearity parameters β and δ resulting from 


the pulse-mode investigations agree quite well with estimates 


from static stress-strain measurements and resonance 


experiments in the sense that they are several orders of


magnitude larger than for ordinary homogeneous materials. 


Just recently hysteresis effects were included in the model, 


opening up new perspectives.

Overview



Motivation

Why study NONLINEAR ELASTICITY?  

Because this work will lead to:

•  Better seismic source models (earthquake vs explosion).

•  Better understanding of seismic wave propagation.

•  New methods by which to characterize rocks

   and their consolidation and saturation condition.




•  Creating a low-frequency seismic source by

   mixing two high frequency sources.



ROCKS ARE HIGHLY DISORDERED MATERIALS:

	 structural defects such as microcracks

 							      & grain-grain boundaries




PREVIOUS EXPERIMENTS on NONLINEAR ELASTICITY:


✸	 STATIC STRESS-STRAIN Measurements

		 nonlinear and hysteretic (discontinuous)

			 stress-strain/stress-modulus




✸	 ELASTIC RESONANCE Experiments

		 harmonic generation (predilection for odd harmonics)

		 resonant peak shift

		 hysteresis

Starting Point
for Pulse Mode Investigations



Source emits a single primary frequency signal f (or a pulsed signal

with a broader spectrum), at signal amplitudes that correspond to seismic waves

Nonlinear interaction occurs.  Each elemental volume excited by

the primary frequency becomes a nonlinear oscillator, producing 

waves at harmonic frequencies 2f, 3f, etc.
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The process is cumulative.  More and

more energy is transferred from the

primary frequency to the harmonics.
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The effect of adding harmonics

 distorts the waveform slightly.
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GOAL: 	 CAN ONE GET CONSISTENT DATA


			 FROM PULSE-MODE INVESTIGATIONS ???



___ 

1-D Propagation Theory
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✒ u   is the displacement  (x distance, t time)

✒ β, δ, η, ξ are the first, second, third



	              and fourth nonlinearity parameters

✒ Put  β, δ, η, ξ  equal to zero -> Linear case



     CL is the linear wave speed

✒ S  is the source function



Source Functions

Spectrum of frequencies:

Un = An exp( i φn ) = U-nwith
cc

ω0 :  repetition frequency

Broadband signal:

Sx(x,t) = -2 i k δ(x) 2π Ω t e−Ωt

Sx(x,ω) = -2               2π      Un δ(ω-nω0)
   +∞

 Σ
n = −∞

δ(x)______∂
∂ x



Solution

Un(x+dx)  =  Un(x) Exp[  -            dx  ]

Green's function + Perturbation Method:
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ω0


2c
L

____
5

5

m,l,k = −∞

 +∞


 Σ-                        Un-m-l-k (x) Um(x) Ul(x) Uk(x) (n-m-l-k) m l k  C(n-m-l-k,m,l,k)
ω0


2c
L

____
4

4

 +∞


 Σ+ i                     Un-m-l (x) Um(x) Ul(x) (n-m-l) m l  B(n-m-l,m,l)
ω0


2c
L

____
3

3

 m,l = −∞

 +∞


 Σ+                      Un-m (x) Um(x) (n-m) m  A(n-m,m)
ω0


2c
L

____
2

2

 m = −∞

____  n ω0


2 Q c
L 



D(n,m,l,k,j) = ξ dx + ...

C(n,m,l,k) = η dx + ...

B(n,m,l) = δ dx - β2 dx (              )

A(n-m,m) =  β  dx
3(n+m+l) - n


     n+m+l
__________ - i           β2 dx2(m+l) ω0


     2 cL

________

Equation for n-th order spectral component

➷

First term: linear propagation with attenuation


Other terms: nonlinear effects !!!!

This equation is a generalization of the Burgers' equation


solution for 1D propagation in highly nonlinear solids



Remarks:

1.	 This equation accounts for harmonic generation:
	  nonlinear interaction (NI) of frequency components.

		 - 1st order NI between  Un-m  and  Um
		 - 2nd order NI between  Un-m-l ,  Um  and  Ul
		 - ...

2.	 We use this equation in an iterative procedure:
	  	 - stepwise calculation using small steps  dx.
		 - use previous output as input for next iteration.

3.	 Coefficients  A, B, C and D differ for different 
	 source characteristics:
		 distinction between "breathing" (explosive)
		 and "wiggling/sliding" sources (earthquakes).



"Clean" single frequency source of frequency ω :

  (closed circles on next figures) 

			 2ω harmonic frequency component grows
								 - linear with propagation distance  x from the source
								 - quadratic with frequency  ω
								 - quadratic with source intensity  A1

"Contaminated" multi-frequency source with rep-rate ω :

  (open circles on next figures) 

			 2ω harmonic frequency component grows  CRAZY

					 ✑    no simple powerlaw dependences ...

					 ✑    spectral ratios is out of the question ...



y = 23170 * x^(1.99) R= 0.99999 
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Second Harmonic Dependences



   •  for a single frequency source

    o  for a two-frequency input
        with   A2ω = 5 % of Aω
        at the source
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Exploring the possibility
of

PARAMETRIC ARRAYS
in ROCKS

Large nonlinear coefficients

Large Attenuation



HP 3314A

Function Generator

Analogic 652/6100B

Waveform Analyzer

2 m

58 cm

Philtech ABH 88N2

Optical Displacement


Sensor

Crown PSA-2

Power Amplifier

 6 cm Diameter Berea Sandstone

 Rod with Anechoic Termination

Valpey-Fisher 

VP-1092

Pinducers

Fiber

Optic

Probe

Piezoelectric

Source

Transducer

Source displacements ranged from approximately 10-9Ð10-7m.  

Experimental Apparatus



Displacements for various Intensity levels

Berea Sandstone

Experimental Data
     Meegan et al.

(single frequency input)
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Comparison Theoretical Model-Experimental Data

β ≈ − ( 300 - 810 )			 δ ≈  − ( 2.0 . 10
8
 - 2.6 . 10

9
 )

Q = 10, f = 13.75 kHz, c = 2600 m/s

      Model: bars				 Experiment: solid lines



Periods in time
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Source and Receiver (58 cm)



(multi frequency input)
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Recently repeated Meegan et al. experiment with
an aged, fatigued "messy" source

Spectra (shown to the right) 
generated from the source 
spectrum shown left were 
taken at nine distances from 
the source and are shown in 
red.  Theory predicts the 
green circles.  
Note site response.

Results suggest 
upper limits for  β,  δ  
shown. 



β ≤ − ( 500 )   δ ≤ − ( 1.0 . 108 )   Q = 10

Comparison Theoretical Model-Experimental Data
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New experiments in a "thinner" Berea sandstone rod
with accelerometers mounted on the surface

Linear and nonlinear waveforms and spectra

To account for 
site response, the 
method of 
spectral ratios 
was utilized.  
Nonlinearity 
manifests itself 
as growth of the 
spectral ratios of 
the various 
harmonics.  Plots 
shown to the 
right show 
spectral ratios for 
experiments in 
and out of 
vacuum.
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Hysteretic Model
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✒ α  is the HYSTERETIC TERM that accounts for



		 a discontinuous modulus-stress and 



		 a bimodal stress-strain relation

✒ β, δ are the first & second nonlinearity parameters







2



10-11

10-9

10-7

10-5

0 20 40 60 80 100 120 140
Frequency Component

10-11

10-9

10-7

10-5

0 20 40 60 80 100 120 140

D
is

p
la

ce
m

en
t 

A
m

p
li

tu
d

e

Frequency Component

10-11

10-9

10-7

10-5

0 20 40 60 80 100 120 140

D
is

p
la

ce
m

en
t 

A
m

p
li

tu
d

e

Frequency Component

only  β - nonlinearity only  Hysteresis  

Combination

nonlinearity-hysteresis

Nonlinear wave propagation

including hysteretic effects

also accounts for predilection

of odd harmonics






1.  To observe nonlinear response, look at second order effects,

     e.g., harmonics. If frequency content changes take place in waves

     generated by natural and explosive sources at seismic frequencies

     in the earth, then nonlinear  elastic effects could eventually influence

     the way in which seismic explosive sources are modeled.

2.  β  in rock is several orders of magnitude larger than in "linear" materials.

     Odd harmonics dominate:    high δ-term,  Intrinsic to (some?) rocks?

     Consistent magnitude of model parameters β and δ

     for static tests, resonance and pulse-mode investigations.

Conclusions of Pulse-mode
and Resonant Bar Studies

3.  Hysteresis may be a competitive ingredient in the wave propagation

     model.

4. This work is leading to a method and theoretical framework for 

    measuring change in saturation, microstructure, density and fatigue

    in a very sensitive manner. It may well lead to in situ characterization 

    of reservoir rock in boreholes.





